
DTIC FIL COPY
AVF Control Number: AVF-IABG-056

00
CAda COMPILER

VALIDATION SUMMARY REPORT:
Certificate Number: #89120611.10265

TeleSoft
4Motorola VME Delta Series TeleGen2 Ada

Delta 2616 x MVME181 (MC88100)

Completion of On-Site Testing:
6 December 1989

Prepared By:
IABG mbH, Abt. SZT
Einsteinstrasse 20
D-8012 Ottobrunn
West Germany

Prepared For:
Ada Joint Program Office

United States Department of Defense
Washington DC 20301-3081 D T IC

ELECTt

L ApProved I --

'ST""
U T,

4-?lLMSSNUTI Ada Compiler Validation Sumary Report: TeleSoft. -i -Nww

Motorola VME Delta series TeleGan2 Ada, Delta 2616 (Host) to

KVME181 (Target), 89120611.10265

LI6BG-AVF
Ottobrunn, FEERAL REPUBLIC OF GEm~nY

IAG-AVF * Industriaulagon..Betriebsgeselschaf t
Dept. SZT
Einstainstrasse 20- AVF- IABG-056
0-8012 Ottobrun
FEDERAL REPUBLIC OF*GERM4ANY
61 - .W1 AGENCY NAU(3MAflOU8S(E5

Ada Joint Program Office
United States Department of Defense
Waihinston. D.C. 20301-3081

Approved for public release; distribution unlimited.

TeleSoft, Motorola VHE Delta Series TeleGefl2 Ada, ottobrunl, West
Germany, Motorola V

Delta Series TeleGeu2 Ada, Delta 2616 (Host) to MVM181 (MC88LOO) (Target)* ACVC 1-10.

89120611. 10265

i4II~EIWAd rgraing language. Ada Compilei Validation b A

Testins, Ada Validation Office., Ads Validation FacilitY, ANSI/IIIL- ,s. cNMvm

Ada Compiler Validation Summary Report:

Compiler Name: Motorola VME Delta Series TeleGen2 Ada
Cross Compilation System
Version 4.0

Certificate Number: #89120611.10265

Host: Motorola Delta Model 2616
(Motorola VME 132xt, 68020/68881)
under Motorola SYSTEM V/68 Version V3.5

Target: Motorola MVME181 (MC88100)

bare machine

Testing Completed 6 December 1989 Using ACVC 1.10

This report has been reviewed and is approved.

IABG mbH, Abt. SZT
Dr. S. Heilbrunner A
Einsteinstr. 20 ;:Son For

D-8012 Ottobrunn A&I
West Germany DTIC TAB

Unazrnouzcc~d.1 J1tif icati

Ada VAIidati6 rgan ization Distributlon/ _

9 DirectorComp ter & Software Engineering Division Availability Codes

Institute or Defense Analyses
Alexandria, A 22311 jAvail Ind/or

Dist jSpecial

Ada Joint Program Office

/1 Dr John Solomond
Director
Department of Defense
Washington DC 20301

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION 2

1.1 PURPOSE OF THIS VALIDATION SU1!..ARY REPORT 2
1.2 USE OF THIS VALIDATION SUMMARY REPORT 3
1.3 REFERENCES 4
1.4 DEFINITION OF TERMS 4
1.5 ACVC TEST CLASSES 5

CHAPTER 2 CONFIGURATION INFORMATION 8

2.1 CONFIGURATION TESTED 8
2.2 IMPLEMENTATION CHARACTERISTICS 9

CHAPTER 3 TEST INFORMATION15

3.1 TEST RESULTS15
3.2 SUMMARY OF TEST RESULTS BY CLASS 15
3.3 SUMMARY OF TEST RESULTS BY CHAPTER 16
3.4 VITHDRAWN TESTS 16
3.5 INAPPLICABLE TESTS 16
3.6 TEST, PROCESSING, AND EVALUATION MODIFICATIONS . 20
3.7 ADDITIONAL TESTING INFORMATION 20

3.7.1 Prevalidation 20
3.7.2 Test Method 20
3.7.3 Test Site 21

APPENDIX A DECLARATION OF CONFORMANCE

APPENDIX B APPENDIX F OF THE Ada STANDARD

APPENDIX C TEST PARAMETERS

APPENDIX D UITHDRAWN TESTS

APPENDIX E COMPILER AND LINKER OPTIONS

INTRODUCTION

CHAPTER 1

INTRODUCTION

This Validation Summary Report tVSRf"f describes the extent to which a
specific Ada compiler conforms to the Ada Standard, ANSI/NIL-STD-1815A.
This report explains all technical terms used within it and thoroughly
reports the results o &_.sng this compiler using the Ada Compiler
Validation Capability3 (ACVC). An Ada compiler must be implemented
according to the Ada Standard, and any implementation-dependent features
must conform to the requirements of the Ada Standard. The Ada Standard
must be implemented in its entirety, and nothing can be implemented that is
not in the Stand

Even though all validated Ada compilers conform to the Ada Standard, it
must be understood that some differences do exist between implementations.
The Ada Standard permits some implementation dependencies--for example, the
maximum length of identifiers or the maximum values of integer types.
Other differences between compilers result from the characteristics of
particular operating systems, hardware, or implementation strategies. All
the dependencies observed during the process of testing this compiler are
given in this report.'

Theinformation in this report is derived from the test results produced
during validation testing. The validation process includes submitting a
suite of standardized tests, the ACVC, as inputs to an Ada compiler and
evaluating the results.-rThe purpose of validating is to ensure conformity
of the compiler to the Ada btandard by testing that the compiler properly
implements legal language constructs and that it identifies and rejects
illegal language constructs. The testing also identifies behavior that is
implementation dependent, but is permitted by the Ada Standard. Six
classes of tests are used. These tests are designed to perform checks at
compile time, at link time, and during execution.

1.1 PURPOSE OF THIS VALIDATION SUMMARY REPORT

This VSR documents the results of the validation testing performed on an
Ada compiler. Testing was c?-ried out for the following purposes:

INTRODUCTION

. To attempt to identify any language constructs supported by the
compiler that do not conform to the Ada Standard

. To attempt to identify any language constructs not supported by
the compiler but required by the Ada Standard

. To determine that the implementation-dependent behavior is allowed
by the Ada Standard

Testing of this compiler was conducted by the AVF according to
procedures established by the Ada Joint Program Office and administered by
the Ada Validation Organization (AVO).

1.2 USE OF THIS VALIDATION SUMMARY REPORT

Consistent with the national laws of the originating country, the AVO may
make full and free public disclosure of this report. In the United States,
this is provided in accordance with the "Freedom of Information Act"
(5 U.S.C. #552). The results of this validation apply only to the
computers, operating systems, and compiler versions identified in this
report.

I

The organizations represented on the signature page of this report do not
represent or warrant that all statements set forth in this report are
accurate and complete, or that the subject compiler has no nonconformities
to the Ada Standard other than those presented. Copies of this report are
available to the public from:

Ada Information Clearinghouse
Ada Joint Program Office
OUSDRE
The Pentagon, Rm 3D-139 (Fern Street)
Washington DC 20301-3081

or from:
IABG mbH, Abt. SZT
Einsteinstr. 20
D-8012 Ottobrunn
West Germany

Questions regarding this report or the validation test results shou ld be
directed to the AVF listed above or to:

Ada Validation Organization
Institute for Defense Analyses
1801 North Beauregard Street
Alexandria VA 22311

INTRODUCTION

1.3 REFERENCES

1. Reference Manual for the Ada Programming Language,
ANSI/MIL-STD-1815A, February 1983 and ISO 8652-1987.

2. Ada Compiler Validation Procedures and Guidelines, Ada Joint
Program Office, 1 January 1987.

3. Ada Compiler Validation Capability Implementers' Guide, SofTech,
Inc., December 1986.

4. Ada Compiler Validation Capability User's Guide, December 1986.

1.4 DEFINITION OF TERMS

ACVC The Ada Compiler Validation Capability. The set of Ada
programs that tests the conformity of an Ada compiler to the
Ada programming language.

Ada An Ada Commentary contains all information relevant to the
Commentary point addressed by a comment on the Ada Standard. These

comments are given a unique identification number having the
form AI-ddddd.

Ada Standard ANSI/MIL-STD-1815A, February 1983 and ISO 8652-1987.

Applicant The agency requesting validation.

AVF The Ada Validation Facility. The AVF is responsible for
conducting compiler validations according to procedures
contained in the Ada Compiler Validation Procedures and
Guidelines.

AVO The Ada Validation Organization. The AVO has oversight
authority over all AVF practices for the purpose of
maintaining a uniform process for validation of Ada
compilers. The AVO provides administrative and technical
support for Ada validations to ensure consistent practices.

Compiler A processor for the Ada language. In the context of this
report, a compiler is any language processor, including
cross-compilers, translators, and interpreters.

Failed test An ACVC test for which the compiler generates a result that
demonstrates nonconformity to the Ada Standard.

Host The computer on which the compiler resides.

TNTRODUCTTON

Inapplicable An ACVC test that uses features of the language that a
test compiler is not required to support or may legitimately

support in a way other than the one expected by the test.

Passed test An ACVC test for which a compiler generates the expected
result.

Target The computer which executes the code generated by the
compiler.

Test A program that checks a compiler's conformity regarding a
particular feature or a combination of features to the Ada
Standard. In the context of this report, the term is used to
designate a single test, which may comprise one or more
files.

Withdrawn An ACVC test found to be incorrect and not used to check
test conformity to the Ada Standard. A test may be incorrect

because it has an invalid test objective, fails to meet its
test objective, or contains illegal or erroneous use of the
language.

1.5 ACVC TEST CLASSES

Conformity to the Ada Standard is measured using the ACVC. The ACVC
contains both legal and illegal Ada programs structured into six test
classes: A, B, C, D, E, and L. The first letter of a test name identifies
the class to which it belongs. Class A, C, D, and E tests are executable,
and special program units are used to report their results during
execution. Class B tests are expected to produce compilation errors.
Class L tests are expected to produce errors because of the way in which a
program library is used at link time.

Class A tests ensure the successful compilation and execution of legal Ada
programs with certain language constructs which cannot be verified at run
time. There are no explicit program components in a Class A test to check
semantics. For example, a Class A test checks that reserved words of
another language (other than those already reserved in the Ada language)
are not treated as reserved words by an Ada compiler. A Class A test is
passed if no errors are detected at compile time and the program executes
to produce a PASSED message.

Class B te:;ts check that a compiler detects illegal language usage.
Class B tests are not executable. Each test in this class is compiled and
the resulting compilation listing is examined to verify that every syntax
or semantic error in the test is detected. A Class B test is passed if
every illegal construct that it contains is detected by the compiler.

INTRODUCTION

Class C tests check the run time system to ensure that legal Ada programs
can be correctly compiled and executed. Each Class C test is self-checking
and produces a PASSED, FAILED, or NOT APPLICABLE message indicating the
result when it is executed.

Class D tests check the compilation and execution capacities of a compiler.
Since there are no capacity requirements placed on a compiler by the Ada
Standard for some parameters--for example, the number of identifiers
permitted in a compilation or the number of units in a library--a compiler
may refuse to compile a Class D test and still be a conforming compiler.
Therefore, if a Class D test fails to compile because the capacity of the
compiler is exceeded, the test is classified as inapplicable. If a Class D
test compiles successfully, it is self-checking and produces a PASSED or
FAILED message during execution.

Class E tests are expected to execute successfully and check
implementation-dependent options and resolutions of ambiguities in the Ada
Standard. Each Class E test is self-checking and produces a NOT
APPLICABLE, PASSED, or FAILED message when it is compiled and executed.
However, the Ada Standard permits an implementation to reject programs
containing some features addressed by Class E tests during compilation.
Therefore, a Class E test is passed by a compiler if it is compiled
successfully and executes to produce a PASSED message, or if it is rejected
by thi compiler for an allowable reason.

Class L tests check that incomplete or illegal Ada programs involving
multiple, separately compiled units are detected and not allowed to
execute. Class L tests are compiled separately and execution is attempted.
A Class L test passes if it is -ejected at link time--that is, an attempt
to execute the main program must generate an error message before any
declarations in the main program or any units referenced by the main
program are elaborated. In some cases, an implementation may legitimately
detect errors during compilation of the test.

Two library units, the package REPORT and the procedure CHECKFILE, support
the self-checking features of the executable tests. The package REPORT
provides the mechanism by which executable tests report PASSED, FAILED, or
NOT APPLICABLE results. It also provides a set of identity functions used
to defeat some compiler optimizations allowed by the Ada Standard that
would circumvent a test objective. The procedure CHECK-FILE is used to
check the contents of text files written by some of the Class C tests for
Chapter 14 of the Ada Standard. The operation of REPORT and CHECK-FILE is
checked by a set of executable tests. These tests produce messages that
are examined to verify that the units are operating correctly. If these
units are not operating correctly, then the validation is not attempted.

The text of each test in the ACVC follows conventions that are intended to
ensure that the tests are reasonably portable without modification. For
example, the tests make use of only the basic set of 55 characters, contain
lines with a maximum length of 72 characters, use small numeric values, and
tests. However, some tests contain values that require the test to be

INTRODUCTION

customized according to implementation-specific values--for example, an
illegal file name. A list of the values used for this validation is
provided in Appendix C.

A compiler must correctly process each of the tests in the suite and
demonstrate conformity to the Ada Standard by either meeting the pass
criteria given for the test or by showing that the test is inapplicable to
the implementation. The applicability of a test to an implementation is
considered each time the implementation is validated. A test that is
inapplicable for one validation is not necessarily inapplicable for a
subsequent validation. Any test that was determined to contain an illegal
language construct or an erroneous language construct is withdrawn from the
ACVC and, therefore, is not used in testing a compiler. The tests
withdrawn at the time of this validation are given in Appendix D.

CONFIGURATION INFORMATION

CHAPTER 2

CONFIGURATION INFORMATION

2.1 CONFIGURATION TESTED

The candidate compilation system for this validation was tested under the
following configuration:

Compiler: Motorola VME Delta Series TeleGen2 Ada
Cross Compilation System
Version 4.0

ACVC Version: 1.10

Certificate Number: #89120611.10265

Host Computer:

Machine: Motorola Delta Model 2616
(Motorola VMS 132xt, 68020/68881)

Operating System: Motorola SYSTEM V/68 Version V3.5

Memory Size: 12 MegaBytes

Target Computer:

Machine: Motorola MYE181 (MC88100)

Operating System: bare machine

Memory Size: 8 MegaBytes

CONFIGURATION INFORMATION

2.2 IMPLEMENTATION CHARACTERISTICS

One of the purposes of validating compilers is to determine the behavior of
a compiler in those areas of the Ada Standard that permit implementations
to differ. Class D and E tests specifically check for such implementation
differences. However, tests in other classes also characterize an
implementation. The tests demonstrate the following characteristics:

a. Capacities.

1) The compiler correctly processes 21 compilation
containing 723 variables in the same declarative part. (See
test D29002K.)

2) The compiler correctly processes tests containing
loop statements nested to 65 levels. (See tests D55AO3A..H
(8 tests).)

3) The compiler correctly processes tests containing
block statements nested to 65 levels. (See test D56001B.)

4) The compiler correctly processes tests containing
recursive procedures separately compiled as subunits nested to
17 levels. (See tests D64005E..G (3 tests).)

b. Predefined types.

1) This implementation supports the additional predefined types
SHORT-INTEGER, SHORTSHORTINTEGER and LONG-FLOAT in the
package STANDARD. (See tests B86001T..Z (7 tests).)

c. Expression evaluation.

The order in which expressions are evaluated and the time at which
constraints are checked are not defined by the language. While
the ACVC tests do not specifically attempt to determine the order
of evaluation of expressions, test results indicate the following:

1) Some of the default initialization expressions
for record components are evaluated before any value is
checked for membership in a component's subtype. (See test
C32117A.)

2) Assignments for subtypes are performed with the same
precision as the base type. (See test C35712B.)

3) This implementation uses no extra bits for extra precision
and uses no extra bits for extra range. (See test C35903A.)

4) NUMERIC-ERROR is raised for predefined and largest integer

CONFIGURATION INFORMATION

comparison tests, and NUMERIC ERROR is raised for predefined
and largest integer membership tests, and no exception is
raised for smallest integer membership tests when an integer
literal operand in a comparison or membership test is outside
the range of the base type. (See test C45232A.)

5) NU iERIC-ERROR is raised when a literal operand in a
fixed-point comparison or membership test is outside the range
of the base type. (See test C45252A.)

6) Underflow is not gradual. (See tests C45524A..Z (26
tests).)

d. Rounding.

The method by which values are rounded in type conversions is not
defined by the language. While the ACVC tests do not specifically
attempt to determine the method of rounding, the test results
indicate the following:

1) The method used for rounding to integer is round to even.
(See tests C46012A..Z (26 tests).)

2) The method used for rounding to longest integer is round
to even. (See tests C46012A..Z (26 tests).)

3) The method used for rounding to integer in static universal
real expressions is round away from zero. (See test C4AO14A.)

e. Array types.

An implementation is allowed to raise NUMERICERROR or
CONSTRAINT ERROR for an array having a 'LENGTH that exceeds
STANDARD.INTEGER'LAST and/or SYSTEM.MAXINT. For this
implementation:

1) Declaration of an array type or subtype declaration with more
than SYSTEM.MAXINT components raises no exception under the
specific circumstances test C36003A.

2) NUMERIC-ERROR is raised when 'LENGTH is applied to an array
type with INTEGER'LAST + 2 components. (See test C36202A.)

3) NUMERIC-ERROR is raised when an array type with
SYSTEM.MAXINT + 2 components is declared. (See test
C36202B.)

4) A packed BOOLEAN array having a 'LENGTH exceeding INTEGER'LAST

CONFIGURATION INFORMATION

raises NUMERICERROR. (See test C52103X.)

5) A packed two-dimensional BOOLEAN array with more than
INTEGER'LAST components raises NUMERIC ERROR when the length
of a dimension is calculated and exceeds INTEGER'LAST. (See
test C52104Y.)

6) In assigning one-dimensional array types, the expression is
evaluated in its entirety before CONSTRAINT-ERROR is
raised when checking whether the expression's subtype is
compatible with the target's subtype. (See test C52013A.)

7) In assigning two-dimensional array types, the expression
is not evaluated in its entirety before CONSTRAINTERROR is
raised when checking whether the expression's subtype is
compatible with the target's subtype. (See test C52013A.)

8) A null array with one dimension of length greater than
INTEGER'LAST may raise NUMERIC-ERROR or CONSTRAINT-ERROR
either when declared or assigned. Alternatively, an
implementation may accept the declaration. However, lengths
must match in array slice assignments. This implementation
raises NUMERIC-ERROR. (See test E52103Y.)

f. Discriminated types.

1) In assigning record types with discriminants, the expression
is evaluated in its entirety before CONSTRAINT-ERROR is raised
when checking whether the expression's subtype is compatible
with the target's subtype. (See test C52013A.)

g. Aggregates.

1) In the evaluation of a multi-dimensional aggregate, the test
results indicate that index subtype checks are
made as choices are evaluated. (See tests C43207A and
C43207B.)

2) In the evaluation of an aggregate containing subaggregates,
not all choices are evaluated before being checked for
identicil bounds. (See test E43212B.)

3) CONSTRAINT-ERROR is raised after all choices are
evaluated when a bound in a non-null range of a non-null
aggregate does not belong to an index subtype. (See test
E43211B.)

CONFIGURATION INFORMATION

h. Pragmas.

I) The pragma INLINE is not supported for procedures or func-
tions. (See tests LA3004A..B (2 tests), EA3004C..D (2 tests),
and CA3004E..F (2 tests).)

i. Generics.

This implementation creates a dependence between a generic body
and those units which instantiate it. As allowed by IA-408/lI, if
the body is compiled after a unit that instantiates it, then that
unit becomes obsolete.

1) Generic specifications and bodies can be compiled
in separate compilations. (See tests CAI012A, CA2009C,
CA2009F, BC3204C, and BC3205D.)

2) Generic subprogram declarations and bodies can be
compiled in separate compilations. (See tests CA1012A and
CA2009F.)

3) Generic library subprogram specifications and bodies can
be compiled in separate compilations. (See test
CAI012A.)

4) Generic non-library package bodies as subunits can
be compiled in separate compilations. (See test CA2009C.)

5) Generic non-library subprogram bodies can be
compiled in separate compilations from their stubs. (See test
CA2009F.)

6) Generic unit bodies and their subunits can be
compiled in separate compilations. (See test CA3011A.)

7) Generic package declarations and bodies can be
compiled in separate compilations. (See tests CA2009C,
BC3204C, and BC3205D.)

12

CONFIGURATION INFORMATION

8) Generic library package specifications and bodies can
be compiled in separate compilations. (See tests
BC3204C and BC3205D.)

9) Generic unit bodies and their subunits can be
compiled in separate compilations. (See test CA3011A.)

j. Input and output.

1) The package SEQUENTIALIO can be instantiated with uncon-
strained array types or record types with discriminants with-
out defaults. (See tests AE2101C, EE2201D, and EE2201E.)

2) The package DIRECT-TO cannot be instantiated with uncon-
strained array types or record types with discriminants with-
out defaults. (See tests AE2101H, EE2401D, and EE2401G.)

3) Modes INFILE and OUTFILE are supported for SEQUENTIALIO.
(See tests CE2102D..E, CE2102N, and CE2102P.)

4) Modes INFILE, OUTJFILE, and INOUTFILE are supported for
DIRECT 10. (See tests CE2102F, CE2102I..J (2 tests), CE2102R,
CE2102T, and CE2102V.)

5) Modes IN FILE and OUTJILE are supported for text files.
(See tests CE3102E and CE3102I..K (3 tests).)

6) RESET and DELETE operations are supported for
SEQUENTIAL_10. (See tests CE2102G and CE2102X.)

7) RESET and DELETE operations are supported for DIRECTIO.
(See tests CE2102K and CE2102Y.)

8) RESET and DELETE operations are supported for text
files. (See tests CE3102F..G (2 tests), CE3104C, CE3110A, and
CE3114A.)

9) Overwriting to a sequential file does not truncate the file.
(See test CE2208B.)

10) Temporary sequential files are given names and not
deleted when closed. (See test CE2108A.)

11) Temporary direct files are not given names and not
deleted when closed. (See test CE2108C.)

12) Temporary text files are not given names and not deleted
when closed. (See test CE3112A.)

CONFIGURATION INFORMATION

13) More than one internal file can be associated with
each external file for sequential files when reading
only. (See tests CE2107A..E (5 tests), CE2102L, CE2110B, and
CE2111D.)

14) More than one internal file can be associated with
each external file for direct files when reading only. (See
tests CE2107F..H (3 tests), CE2110D and CE2111H.)

15) More than one internal file can be associated with
each external file for text files when reading only (See
tests CE3111A..E (5 tests), CE3114B, and CE3115A.)

14

TEST INFORMATION

CHAPTER 3

TEST INFORMATION

3.1 TEST RESULTS

Version 1.10 of the ACVC comprises 3717 tests. When this compiler was
tested, 44 tests had been withdrawn because of test errors. The AVF
determined that 312 tests were inapplicable to this implementation.
All inapplicable tests were processed during validation testing except for
201 executable tests that use floating-point precision exceeding
that supported by the implementation. Modifications to the code,
processing, or grading for 12 tests were required to successfully
demonstrate the test objective. (See section 3.6.)

The AVF concludes that the testing results demonstrate acceptable
conformity to the Ada Standard.

3.2 SUMMARY OF TEST RESULTS BY CLASS

RESULT TEST CLASS TOTAL
A B C D E L

Passed 128 1130 2018 17 24 44 3361

Inapplicable 1 8 297 0 4 2 312

Withdrawn 1 2 35 0 6 0 44

TOTAL 130 1140 2350 17 34 46 3717

1.5

TEST INFORMATION

3.3 SUMMARY OF TEST RESULTS BY CHAPTER

RESULT TEST CHAPTER TOTAL

2 3 4 5 6 7 8 9 10 11 12 13 14

Passed 198 573 545 244 172 99 161 332 129 36 250 341 281 3361

N/A 14 76 135 4 0 0 5 0 8 0 2 28 40 312

Wdrn 1 1 0 0 0 0 0 2 0 0 1 35 4 44

TOTAL 213 650 680 248 172 99 166 334 137 36 253 404 325 3717

3.4 WITHDRAWN TESTS

The following 44 tests were withdrawn from ACVC Version 1.10
at the time of this validation:

E28005C A39005G B97102E C97116A BC3009B CD2A62D
CD2A63A CD2A63B CD2A63C CD2A63D CD2A66A CD2A66B
CD2A66C CD2A66D CD2A73A CD2A73B CD2A73C CD2A73D
CD2A76A CD2A76B CD2A76C CD2A76D CD2A81G CD2A83G
CD2A84N CD2A84M CD50110 CD2B15C CD7205C CD2D11B
CD5007B ED7004B ED7005C ED7005D ED7006C ED7006D
CD7105A CD7203B CD7204B CD7205D CE21071 CE3111C
CE3301A CE3411B

See Appendix D for the reason that each of these tests was withdrawn.

3.5 INAPPLICABLE TESTS

Some tests do not apply to all compilers because they make use of features
that a compiler is not required by the Ada Standard to support. Others may
depend on the result of another test that is either inapplicable or
withdrawn. The applicability of a test to an implementation is considered
each time a validation is attempted. A test that is inapplicable for one
validation attempt is not necessarily inapplicable for a subsequent
attempt. For this validation attempt, 312 tests were inapplicable for

a. The following 201 tests are not applicable because they have
floating-point type declarations requiring more digits than
SYSTEM.MAXDIGITS:

C24113L..Y (14 tests) C35705L..Y (14 tests)
C35706L..Y (14 tests) C35707L..Y (14 tests)
C35708L..Y (14 tests) C35802L..Z (15 tests)
C45241L..Y (14 tests) C45321L..Y (14 tests)

TEST INFORMATION

C45421L..Y (14 tests) C45521L..Z (15 tests)
C45524L..Z (15 tests) C45621L..Z (15 tests)
C45641L..Y (14 tests) C46012L..Z (15 tests)

b. C355081, C35508J, C35508M, and C35508N are not applicable because
they include enumeration representation clauses for BOOLEAN types
in which the representation values are other than (FALSE => 0,
TRUE => 1). Under the terms of AI-00325, this implementation is
not required to support such representation clauses.

c. C35702A and B86001T are not applicable because this implementation
supports no predefined type SHORT-FLOAT.

d. C45531M..P (4 tests) and C45532M..P (4 tests) are not applicable
because they acquire a value of SYSTEM.MAXMANTISSA greater than
32.

e. C52008B is not applicable because this implementation generates
code to calculate the maximum object size for type REC2 at run
time which yields a number exceeding INTEGER'LAST and raises
NUMERIC-ERROR.

f. C86001F is not applicable because, for this implementation, the
package TEXT_1O is dependent upon package SYSTEM. These tests
recompile package SYSTEM, making package TEXT_10, and
hence package REPORT, obsolete.

g. B86001Y is not applicable because this implementation supports no
predefined fixed-point type other than DURATION.

h. B86OO1Z is not applicable because this implementation supports no
predefined floating-point type with a name other than FLOAT,
LONG-FLOAT, or SHORT-FLOAT.

i. The following 16 tests are not applicable because this
implementation does not support a predefined type LONG_INTEGER:

C45231C C45304C C45502C C45503C C45504C
C45504F C45611C C45613C C45614C C45631C
C45632C B52004D C55B07A B55B09C B86001W
CD71O1F

j. CA2009C, CA2009F, BC3204C and BC3205D are not applicable because
this implementation creates a dependence between a generic body
and those units which instantiate it (See Section 2.2.i and
Appendix F of the Ada Standard).

k. LA3004A, EA3004C, and CA3004E are not applicable because this

implementation does not support pragma INLINE for procedures.

1. LA3004B, EA3004D, and CA3004F are not applicable because this

17

TEST INFORMATION

implementation does not support pragma I1;LINE for functions.

m. CD1009C, CD2A41A..B (2 tests), CD2A41E and CD2A42A..J (10 tests)
are not applicable because of restrictions on 'SIZE length clauses
for floating point types.

n. CDIC04E is not applicable because this implementation does not
support component clauses specifying more than 8 bits for boolean
components of a record.

o. CD2A61I..J (2 tests) are not applicable because of restrictions on
'SIZE length clauses for array types.

p. CD2A84B..I (8 tests) and CD2A84K..L (2 tests) are not applicable
because of restrictions on 'SIZE length clauses for access types.

q. AE21OlH, EE2401D, and EE2401G use instantiations of package
DIRECTrO with unconstrained array types and record types with
discriminants without defaults. These instantiations are rejected
by this compiler.

r. CE2102D is inapplicable because this implementation supports
CREATE with IN-FILE mode for SEQUENTIAL10.

s. CE2102E is inapplicable because this implementation supports
CREATE with OUT-FILE mode for SEQUENTIAL_10.

t. CE2102F is inapplicable because this implementation supports
CREATE with INOUTFILE mode for DIRECT_10.

u. CE21021 is inapplicable because this implementation supports
CREATE with INFILE mode for DIRECT_10.

v. CE2102J is inapplicable because this implementation supports
CREATE with OUT-FILE mode for DIRECT_10.

w. CE2102N is inapplicable because this implementation supports OPEN
with IN FILE mode for SEQUENTIALIO.

x. CE21020 is inapplicable because this implementation supports RESET
with IN FILE mode for SEQUENTIAL_10.

y. CE2102P is inapplicable because this implementation supports OPEN
with OUT-FILE mode for SEQUENTIAL_IO.

z. CE2102Q is inapplicable because this implementation supports RESET
with OUT-FILE mode for SEQUENTIALIO.

aa. CE2102R is inapplicable because this implementation supports OPEN
with INOUTFTLE mode for DIRECT-TO.

TEST INFORMATION

ab. CE2102S is inapplicable because this implementation supports RESET
with INOUT.FTLE mode for DIRECT10.

ac. CE2102T is inapplicable because this implementation supports OPEN
with IN-FILE mode for DIRECT_10.

ad. CE2102U is inapplicable because this implementation supports RESET
with IN-FILE mode for DIRECTIO.

ae. CE2102V is inapplicable because this implementation supports OPEN
with OUTFILE mode for DIRECT_10.

af. CE2102W is inapplicable because this implementation supports RESET
with OUT FILE mode for DIRECTIO.

ag. CE2107B..E (4 tests), CE2107L, CE211OB, and CE2111D are not
applicable because multiple internal files cannot be associated
with the same external file when one or more files is writing
for sequential files. The proper exception is raised when
multiple access is attempted.

ah. CE2107G..H (2 tests), CE2110D, and CE2111H are not applicable
because multiple internal files cannot be associated with the same

- external file when one or more files is writing for direct files.
The proper exception is raised when multiple access is attempted.

ai. CE3102E is inapplicable because text file CREATE with IN-FILE mode
is supported by this implementation.

aj. CE3102F is inapplicable because text file RESET is supported by
this implementation.

ak. CE3102G is inapplicable because text file deletion of an external
file is supported by this implementation.

al. CE3102I is inapplicable because text file CREATE with OUT-FILE
mode is supported by this implementation.

am. CE3102J is inapplicable because text file OPEN with IN-FILE mode
is supported by this implementation.

an. CE3102K is inapplicable because text file OPEN with OUT-FILE mode
is supported by this implementation.

ao. CE3111B, CE3111D..E (2 tests), CE3114B, and CE3115A are not
applicable because multiple internal files cannot be associated
with the same external file when one or more files is writing for
text files. The proper exception is raised when multiple access
is attempted.

TEST INFORMATION

3.6 TEST, PROCESSING, AND EVALUATION MODIFICATIONS

It is expected that some tests will require modifications of code,
processing, or evaluation in order to compensate for legitimate
implementation behavior. Modifications are made by the AVF in cases where
legitimate implementation behavior prevents the successful completion of an
(otherwise) applicable test. Examples of such modifications include:
adding a length clause to alter the default size of a collection; splitting
a Class B test into subtests so that all errors are detected; and
confirming that messages produced by an executable test demonstrate
conforming behavior that was not anticipated by the test (such as raising
one exception instead of another).

Modifications were required for 12 tests.

The following tests were split because syntax errors at one point resulted
in the compiler not detecting other errors in the test:

B71001E B71001K B71001Q B71OO1W BA2001C
BA2001E BA3006A BA3006B BA3007B BA3008A
BA3008B BA3O13A (6 and 7M)

3.7 ADDITIONAL TESTING INFORMATION

3.7.1 Prevalidation

Prior to validation, a set of test results for ACVC Version 1.10 produced
by the TeleGen2 Ada Development System for a computing system based on
the same instruction set architecture was submitted to the AVF by the
applicant for review. Analysis of these results demonstrated that the
TeleGen2 System successfully passed all applicable tests, and it
exhibited the expected behavior on all inapplicable tests. The applicant
certified that testing results for the computing system of this validation
would be identical to the ones submitted for review prior to validation.

3.7.2 Test Method

Testing of the Motorola VME Delta Ada System using ACVC Version 1.10 was
conducted on-site by a validation team from the AVF. The
configuration in which the testing was performed is described by the
following designations of hardware and software components:

Host: Motorola Delta Model 2616
(Motorola VME 132xt, 68020/68881)
under Motorola SYSTEM V/68 Version V3.5

20

TEST INFORMATION

Target: Motorola MVME181 (MC88100)
bare machine

A cartridge containing the customized test suite was loaded onto a SUN-3
and transferred via Ethernet to the host computer. Results were collected
on the host computer and then transferred via Ethernet to yet another
computer for evaluation and archiving.

The compiler was tested using command scripts provided by TeleSoft
and reviewed by the validation team. The tests were compiled using the
command

ada <filename>

and linked with the command

ald +options=<optionsfile> <main unit>

The -L qualifier was added to the compiler call for class B, expanded and
modified tests. See Appendix E for explanation of compiler and linker
switches. The (optionsfile) contained a specification of memory addresses
for the target computer.

Tests'were compiled, linked, and executed (as appropriate) using two com-
puters. Test output, compilation listings, and job logs were
captured on cartridge and archived at the AVF. The listings examined on-
site by the validation team were also archived.

3.7.3 Test Site

Testing was conducted at TeleSoft, San Diego, USA, and was completed on
6 December 1989.

21

DECLARATION OF CONFORMANCE

APPENDIX A

DECLARATION OF CONFORMANCE

TeleSoft and Motorola have submitted the following Declaration of
Conformance concerning the Motorola VHE Delta Ada System.

DECLARATION OF CONFORMANCE

Compiler Implementor: TELESOFT
Ada Validation Facility: IABG, Dept. SZT, D-8012 Ottobrunn
Ada Compiler Validation Capability (ACVC) Version: 1.10

Base Configuration

Base Compiler Name: Motorola VME Delta Series TeleGen2 Ada
Cross Compilation System

Version: 4.0

Host Architecture ISA: Motorola Delta Model 2616
(Motorola VME 132xt, 68020/68881)

OS & VER #: Motorola SYSTEM V/68 Version V3.5

Target Architecture ISA: Motorola MVME181 (MC88100)
OS & VER #: Bare machine

Implementor's Declaration

I, the undersigned, representing TELESOFT, have implemented no deliberate extensions
to the Ada Language Standard ANSI/MIL-STD-1815A in the compiler(s) listed in this
declaration. I declare that Motorola is TELESOFT's licensee of the Ada language
compilers listed above and, as such, is responsible for maintaining said compiler(s) in
conformance to ANSI/MIL-STD-1815A. All certificates and registrations for Ada
language compiler(s) listed in this declaration shall be made only in the licensee's
corate name.

Date:X:
't ELESOFT sdn n

Raymond A. Parra, Vice esident and General Counsel

Licensee's Declaration

Motorola, Inc. assures that all reasonable steps are taken by Motorola, Inc. to maintain
the Ada language compiler(s) listed above in conformance to ANSI/MlL-STD-1815A and
agrees to the public disclosure of the final Validation Summary Report. Motorola, Inc.
agrees to comply with the Ada Joint Program Office policy on the use of the
VALIDATED ADA certification mark. Further, Motorola, Inc. declares that to the best
of its knowledge the Ada language compiler(s) listed, and their host/target configurations
are in compliance with the Ad& Language Stan d ANSI/MIL-STD-1815A.

Ct A~-~Date: 4
MOTOROLA, INCORPORATED :
Name and Title: THOMAS A. BEAVER VICE PRESIDENT & GENERAL MANAGER

APPENDIX F OF THE Ada STANDARD

APPENDIX B

APPENDIX F OF THE Ada STANDARD

The only allowed implementation dependencies correspond to
implementation-dependent pragmas, to certain machine-dependent conventions
as mentioned in chapter 13 of the Ada Standard, and to certain allowed
restrictions on representation clauses. The implementation-dependent
characteristics of the Motorola VME Delta Ada System, as described in this
Appendix, are provided by TeleSoft. Unless specifically noted otherwise,
references in this appendix are to compiler documentation and not to
this 'report. Implementation-specific portions of the package STANDARD,
which are not a part of Appendix F, are:

package STANDARD is

type INTEGER is range -2147483648 .. 2147483647;
type SHORTINTEGER is range -32768 .. 32767;
type SHORTSHORTINTEGER is range -128..127;

type FLOAT is digits 6 range -1.70141E+38 .. 1.70141E+38;
type LONGFLOAT is digits 15

range -8.98846567431158E+307 .. 8.98846567431158E+307;

type DURATION is delta 2#1.0#E-14 range -86400.0 .. 86400.0;

end STANDARD;

ATTACHMENT B

Appendix F OF THE Ada LANGUAGE REFERENCE MANUAL

1. Implementation Dependent Pragmas
2. Implementation Dependent Attributes
3. Specification of Package SYSTEM
4. Restrictions on representation clauses
5. Implementation dependent naming
6. Interpretation of expressions in address clauses
7. Restrictions on unchecked conversions
8. I/O Package characteristics

100CTS9 Page 20

Appendix F

1. Implementation Dependent Pragmas

pragma COMMENT(<string.literal>);
It may only appear within a compilation unit.
The pragma comment has the effect of embedding the given
sequence of characters in the object code of the compilation unit.

pragma LINKNAME(<subprogram name>, <string_literal>);
It may appear in any declaration section of a unit.
This pragma must also appear directly after an interface pragma
for the same <subprogram name>. The pragma linkname has the
effect of making stringjliteral apparent to the linker.

pragma INTERRUPT(Function Mapping);
It may only appear immediately before a simple accept statement,
a while loop directly enclosing only a single accept statement,
or a select statement that includes an interrupt accept alternative.
The pragma interrupt has the effect that entry calls to the
associated entry, on behalf of an interrupt, are made with a
reduced call overhead.

pragma IMAGES(< enumeration type>,Deferred) or
pragma IMAGES(<enumeration type>,Immediate);
It may only appear within a compilation unit.
The pragma images controls the creation and allocation of
the image table for a specified enumeration type. The
default is Deferred, which saves space in the literal pool
by not creating an image table for an enumeration type
unless the 'Image, 'Value, or 'Width attribute for the type
is used. If one of these attributes is used, an image table
is generated in the literal pool of the compilation unit in
which the attribute appears. If the attributes are used in
more than one compilation unit, more than one image table is
generated, eliminating the benefits of deferring the table.

pragma SUPPRESSALL;
It may appear anywhere that a Suppress pragma may appear as
defined by the Language Reference Manual. The pragma
SuppressAll has the effect of turning off all checks
defined in section 11.7 of the Language Reference Manual.
The scope of applicablility of this pragma is the same as
that of the pre-defined pragma Suppress.

10OCT89 Page 21

Appendix F, Cont.

2. Implementation Dependent Attributes

'Offset Attribute

'Offset along with the attribute 'Address, facilitates machine code
insertions. For a prefix P that denotes a declared parameter
object, P'Offset yields the statically known portion of the
address of the first of the storage units allocated to P. The
value is the object's offset relative to a base register and is
of type Long_Integer.

INTEGER ATTRIBUTES

'ExtendedImage Attribute

Usage: X'ExtendedlImage(Item,Width,Base,Based,SpacelIF Positive)

Returns the image associated with Item as per the Text Io definition.
The Text lo definition states that the value of Item is an integer
literal with no underlines, no exponent, no leading zeros
(but a single zero for the zero value) and a minus sign if negative.
If the resulting sequence of characters to be output has fewer than
Width characters then leading spaces are first output to make up
the difference. (LRM 14.3.7:10,14.3.7:11)

For a prefix X that is a discrete type or subtype; this attribute
is a function that may have more than one parameter. The parameter
Item must be an integer value. The resulting string is
without underlines, leading zeros, or trailing spaces.

10OCT89 Page 22

Appendix F, Cont.

Parameter Descriptions:

Item - The user specifies the item that he wants the
image of and passes it into the function. This
parameter is required.

Width - The user may specify the minimum number.of
characters to be in the string that is returned.
If no width is specified then the default (0) is
assumed.

Base - The user may specify the base that the image is
to be displayed in. If no base is specified then
the default (10) is assumed.

Based - The user may specify whether he wants the string
returned to be in base notation or not. If no
preference is specified then the default (false)
is assumed.

SpaceIfPositive - The user may specify whether or not the sign bit
of a positive integer is included in the string
returned. If no preference is specified then
the default (false) is assumed.

Examples:

Suppose the following subtype was declared:

Subtype X is Integer Range -10.. 16;

Then the following would be true:

X'Extended_-Image(5) -"5"

X'Extendedl- mage(5,0) -"511

X'Extended_-Image(5,2) "5"i
X'Extended -Irnage(5,0,2) "101"
X'Extendedlimage(5,4,2) -"101",

X'Extended -mage(5,0,2,True) -"2#101#1"

X'Extended_-Inage(5,O,10.,False) -"5"

X'Extended -Image(5,0,10,False,True) - "1 5"'
X'Extended -mage(- 1,0, 10,False.False) - "1
X'Extended -iage(- 1,0, 10,False,True) - "-I"
X'Extended_-image(- 1,1, 10,False,True) - "-1"
X'Extended -bnage(-1,0,2,True,True) -"-##
X'Extended hnage(-1,10,2,True,True) .2##1

10OCT89 Page 23

Appendix F, Cont.

'ExtendedValue Attribute

Usage: X'ExtendedValue(Item)

Returns the value associated with Item as per the Text Io definition.
The Text Io definition states that given a string, it reads an
integer value from the beginning of the string. The value returned
corresponds to the sequence input. (LRM 14.3.7:14)

For a prefix X that is a discrete type or subtype; this attribute
is a function with a single parameter. The actual parameter Item
must be of predefined type string. Any leading or trailing
spaces in the string X are ignored. In the case where an illegal
string is passed, a CONSTRAINTERROR is raised.

Paralmeter Descriptions:

Item - The user passes to the function a parameter of the
predefined type string. The type of the returned
value is the base type X.

Examples:

Suppose the following subtype was declared:

Subtype X is Integer Range -10..16;

Then the following would be true:

X'Extended Value("5") - 5
X'ExtendedValue(" 5") - 5
X'Extended Value("2#101#") -

X'ExtendedValue("-1") - -1
X'ExtendedValue(" -1") - -

10OCT89 Page 24

Appendix F, Cont.

'Extended Width Attribute

Usage: X'ExtendedWidth(Base,Based,SpaceIfPositive)

Returns the width for subtype of X.

For a prefix X that is a discrete subtype; this attribute
is a function that may have multiple parameters. This attribute
yields the maximum image length over all values of the type
or subtype X.

Parameter Descriptions:

Base - The user specifies the base for which the width
will be calculated. If no base is specified
then the default (10) is assumed.

Based - The user specifies whether the subtype is stated
in based notation. If no value for based is
specified then the default (false) is assumed.

SpaceIf.Positive - The user may specify whether or not the sign bit
of a positive integer is included in the string
returned. If no preference is specified then the
default (false) is assumed.

Examples:

Suppose the following subtype was declared:

Subtype X is Integer Range -10..16;

Then the following would be true:

X'Extended Width - 3 - "-10"

X'Extended_-Width(10) - 3 - "-10"
X'ExtendedWidth(2) - 5 - "10000"
X'Extended_Width(10,True) - 7 - "-10#10#"
X'Extended Width(2,True) 8 - "2#10000#"
X'ExtendedWidth(I0,False,True) - 3 - " 16"
X'Extended Width(10,True,False) 7 - "-10#10#"
X'ExtendedWidth(10,True,True) - 7 -" 10#16#"
X'Extended_Width(2,True,True) - 9 -" 2#10000#"
X'ExtendedWidth(2,False,True) 6 -" 10000"

10OCT89 Page 25

Appendix F, Cont.

ENUMERATION ATTRIBUTES

'Extended Image Attribute

Usage: X'Extended_Image(Item,Width,Uppercase)

Returns the image associated with Item as per the Text _o definition.
The Textlo definition states that given an enumeration literal,
it will output the value of the enumeration literal (either an
identifier or a character literal). The character case parameter
is ignored for character literals. (LRM 14.3.9:9)

For a prefix X that is a discrete type or subtype; this attribute
is a function that may have more that one parameter. The parameter
Item must be an enumeration value. The image of an enumeration
value is the corresponding identifier which may have character case
and return string width specified.

Parameter Descriptions:

Item - The user specifies the item that he wants the image of and
passes it into the function. This parameter is required.

Width - The user may specify the minimum number of characters to
be in the string that is returned. If no width is
specified then the default (0) is assumed. If the Width
specified is larger than the image of Item, then the
return string is padded with trailing spaces; if the
Width specified is smaller than the image of Item then
the default is assumed and the image of the enumeration
value is output completely.

Uppercase - The user may specify whether the returned string is in
uppercase characters. In the case of an enumeration
type where the enumeration literals are character
literals, the Uppercase is ignored and the case
specified by the type definition is taken. If no
preference is specified then the default (true) is
assumed.

10OCT89 Page 26

Appendix F, Cont.

Examples:

Suppose the following types were declared:

Type X is (red, green, blue, purple);
Type Y is ('a', 'B', 'c', 'D');

Then the following would be true:

X'Extended_Image(red) - "RED"
X'ExtendedImage(red, 4) - "RED"
X'ExtendedImage(red,2) "RED"
X'ExtendedlImage(red,O,false) - "red"
X'ExtendedImage(red,1O,false) - "red

Y'Extended lmage('a') - "'a'"
Y'ExtendedImage('B') "'B'"
Y'ExtendedImage('a',6) "'a' "

Y'ExtendedImage('a',O,true) - "'a'"

'Extended Value Attribute

Usage: X'ExtendedValue(Item)

Returns the image associated with Item as per the Text lo definition.
The Text Io definition states that it reads an enumeration value
from the beginning of the given string and returns the value of
the enumeration literal that corresponds to the sequence input.
(LRM 14.3.9:11)

For a prefix X that is a discrete type or subtype; this attribute
is a function with a single parameter. The actual parameter Item
must be of predefined type string. Any leading or trailing
spaces in the string X are ignored. In the case where an illegal
string is passed, a CONSTRAINT ERROR is raised.

Parameter Descriptions:

Item - The user passes to the function a parameter of the
predefined type string. The type of the returned
value is the base type of X.

10OCT89 Page 27

Appendix F, Cont.

Examples:

Suppose the following type was declared:

Type X is (red, green, blue, purple);

Then the following would be true:

X'ExtendedValue("red") = red
X'ExtendedValue(" green") = green
X'ExtendedValue(" Purple") = purple
X'ExtendedValue(" GreEn ") = green

'Extended Width Attribute

Usage: X'Extended Width

Returns the width for subtype of X.

For a prefix X that is a discrete type or subtype; this attribute
is a function. This attribute yields the maximum image length over
all values of the enumeration type or subtype X.

Parameter Descriptions:

There are no parameters to this function. This function
returns the width of the largest (width) enumeration literal
in the enumeration type specified by X.

Examples:

Suppose the following types were declared:

Type X is (red, green, blue, purple);
Type Z is (X1, X12, X123, X1234);

Then the following would be true:

X'Extended Width - 6 - "purple"
Z'Extended-Width - 5 - "X1234"

10OCT89 Page 28

Appendix F, Cont.

FLOATING POINT ATTRIBUTES

'Extended Image Attribute

Usage: X'ExtendedImage(Item,Fore,Aft,Exp,Base,Based)

Returns the image associated with Item as per the Text _o definition.
The Text lo definition states that it outputs the value of the
parameter Item as a decimal literal with the format defined by the
other parameters. If the value is negative then a minus sign
is included in the integer part of the value of Item. If Exp
is 0 then the integer part of the output has as many digits as
are needed to represent the integer part of the value of Item or
is zero if the value of Item has no integer part. (LRM 14.3.8:13,
14.3.8:15)

For a prefix X that is a discrete type or subtype; this attribute
is a function that may have more than one parameter. The parameter
Item must be a Real value. The resulting string is
without underlines or trailing spaces.

Parameter Descriptions:

Item - The user specifies the item that he wants the image of and
passes it into the function. This parameter is required.

Fore - The user may specify the minimum number of characters for
the integer part of the decimal representation in the
return string. This includes a minus sign if the
value is negative and the base with the '#' if based
notation is specified. If the integer part to be output
has fewer characters than specified by Fore, then leading
spaces are output first to make up the difference. If no
Fore is specified then the default (2) value is assumed.

Aft - The user may specify the minimum number of decimal digits
after the decimal point to accommodate the precision desired.
If the delta of the type or subtype is greater than
0.1 then Aft is one. If no Aft is specified then the
default (X'Digits-1) is assumed. If based notation is
specified the trailing '#' is included in aft.

Exp - The user may specify the minimum number of digits in the
exponent; the exponent consists of a sign and the exponent,
possibly with leading zeros. If no Exp is specified then
the default (3) is assumed. If Exp is 0 then no exponent
is used.

10OCT89 Page 29

Appendix F, Cont.

Base - The user may specify the base that the image is to be
displayed in. If no base is specified then the default
(10) is assumed.

Based - The user may specify whether he wants the string returned
to be in based notation or not. If no preference is
specified then the default (false) is assumed.

Examples:

Suppose the following type was declared:

Type X is digits 5 range -10.0 .. 16.0;

Then the following would be true:

X'Extended Image(5.0) - " 5.0000E+00"
X'ExtendedImage(5.0,1) - "5.0000E+00"
X'Extended lmae(-5.0,1) - "-5.0000E+00"
X'Extended_Image(5.0,2,0) -" 5.OE+00"
X'Extended Image(5.0,2,0,0) -" 5.0"
X'ExtendedImage(5.0,2,0,0,2) - "101.0"
X'Extended Image(5.0,2,0,0,2,True) - "2#101.0#"
X'ExtendedImage(5.0,2,2,3,2,True) - "2#1.1# E+02"

'Extended Value Attribute

Usage: X'ExtendedValue(Item)

Returns the value associated with Item as per the Text Io definition.
The Text lo definition states that it skips any leading zeros,
then reads a plus or minus sign if present then reads the string
according to the syntax of a real literal. The return value is
that which corresponds to the sequence input. (LRM 14.3.8:9,
14.3.8:10)

For a prefix X that is a discrete type or subtype; this attribute
is a function with a single parameter. The actual parameter Item
must be of predefined type string. Any leading or trailing
spaces in the string X are ignored. In the case where an illegal
string is passed, a CONSTRAINT ERROR is raised.

100CT89 Page 30

Appendix F, Cont.

Parameter Descriptions:

Item - The user passes to the function a parameter of the
predefined type string. The type of the returned
value is the base type of the input string.

Examples:

Suppose the following type was declared:

Type X is digits 5 range -10.0 .. 16.0;

Then the following would be true:

X'ExtendedValue("5.0") - 5.0
X'ExtendedValue("0.SE1") =- 5.0
X'Extended_Value("2# 1.01# E2") - 5.0

'Extended- Digits Attribute

Usage: X'ExtendedDigits(Base)

Returns the number of digits using base in the mantissa of model
numbers of the subtype X.

Parameter Descriptions:

Base - The user may specify the base that the subtype is
defined in. If no base is specified then the default
(10) is assumed.

Examples:

Suppose the following type was declared:

Type X is digits 5 range -10.0.. 16.0;

Then the following would be true:

X'Extended Digits - 5

10OCT89 Page 31

Appendix F, Cont.

FIXED POINT ATTRIBUTES

'ExtendedImage Attribute

Usage: X'Extendedhmage(Item,Fore,Aft,Exp,Base,Based)

Returns the image associated with Item as per the Text lo definition.
The Text lo definition states that it outputs the value of the
parameter Item as a decimal literal with the format defined by the
other parameters. If the value is negative then a minus sign
is included in the integer part of the value of Item. If Exp
is 0 then the integer part of the output has as many digits as
are needed to represent the integer part of the value of Item or
is zero if the value of Item has no integer part. (LRM 14.3.8:13,
14.3.8:15)

For a prefix X that is a discrete type or subtype; this attribute
is a function that may have more than one parameter. The parameter
Item must be a Real value. The resulting string is
without underlines or trailing spaces.

Parameter Descriptions:

Item - The user specifies the item that he wants the image of and
passes it into the function. This parameter is required.

Fore - The user may specify the minimum number of characters for
the integer part of the decimal representation in the
return string. This includes a minus sign if the
value is negative and the base with the '#' if based
notation is specified. If the integer part to be output
has fewer characters than specified by Fore, then leading
spaces are output first to make up the difference. If no
Fore is specified then the default (2) value is assumed.

Aft - The user may specify the minimum number of decimal digits
after the decimal point to accommodate the precision desired.
If the delta of the type or subtype is greater than
0.1 then Aft is one. If no Aft is specified then the
default (X'Digits-i) is assumed. If based notation is
specified the trailing '#' is included in aft.

Exp - The user may specify the minimum number of digits in the
exponent; the exponent consists of a sign and the exponent,
possibly with leading zeros. If no Exp is specified then
the default (3) is assumed. If Exp is 0 then no exponent
is used.

100CT89 Page 32

Appendix F, Cont.

Base - The user may specify the base that the image is to be
displayed in. If no base is specified then the default
(10) is assumed.

Based - The user may specify whether he wants the string returned
to be in based notation or not. If no preference is
specified then the default (false) is assumed.

Examples:

Suppose the following type was declared:

Type X is delta 0.1 range -10.0 .. 17.0;

Then the following would be true:

X'ExtendedImage(5.0) " 5.00E+00"
X'Extended_Image(5.0,1) = "5.00E+00"
X'Extended Image(-5.0,1) "-5.00E+00"
X'Extended lmage(5.0,2,0) -" 5.0E+00"
X'Extended_Image(5.0,2,0,0) " 5.0"
X'Extended Image(5.0,2,0,0,2) "101.0"
X'ExtendedImage(5.0,2,0,0,2,True) = "2#101.0#"
X'Extended Image(5.0,2,2,3,2,True) = "2#1.1#E+02"

'ExtendedValue Attribute

Usage: X'ExtendedValue(Image)

Returns the value associated with Item as per the Text lo definition.
The Text To definition states that it skips any leading zeros.
then reads a plus or minus sign if present then read the string
according to the syntax of a real literal. The return value is
that which corresponds to the sequence input. (LRM 14.3.8:9.
14.3.8:10)

For a prefix X that is a discrete type or subtype; this attribute
is a function with a single parameter. The actual parameter Item
must be of predefined type string. Any leading or trailing
spaces in the string X are ignored. In the case where an illegal
string is passed, a CONSTRAINT ERROR is raised.

10OCT89 Page 33

Appendix F, Cant.

Parameter Descriptions:

Image - The user passes to the function a parameter of the
predefined type string., The type of the returned
value is the base type of the input string.

Examples:

Suppose the following type was declared:

Type X is delta 0.1 range -10.0 .. 1T.0;

Then the following would be true:

X'ExtendedValue("5.0") - 5.0
X'Extended Value("O.5El") -5.0
X'Extended-_Vaue("2#1.01#E2") - 5.0

'Extended Fore Attribute

Usage: X'ExtendedFore(Base,Based)

Returns the minimum number of characters required for the integer
part of the based representation of X.

Parameter Descriptions:

Base - The user may specify the base that the subtype would be
displayed in. If no base is specified then the default
(10) is assumed.

Based - The user may specify whether he wants the string returned
to be in based notation or not. If no preference is
specified then the default (.false) is assumed.

10OCT89 Page 34

Appendix F, Cont.

Examples:

Suppose the following type was declared:

Type X is delta 0.1 range -10.0 .. 17.1;

Then the following would be true:

X'Extended Fore = 3 - "-10"
X'Extended_-Fore(2) - 6 -"10001"

'ExtendedAft Attribute

Usage: X'Extended Aft (Base,Based)

Returns the minimum number of characters required for the fractional
part of the based representation of X.

Parameter Descriptions:

Base - The user may specify the base that the subtype would be
displayed in. If no base is specified then the default
(10) is assumed.

Based - The user may specify whether he wants the string returned
to be in based notation or not. If no preference is
specified then the default (false) is assumed.

Examples:

Suppose the following type was declared:

Type X is delta 0.1 range -10.0.. 17.1;

Then the following would be true:

X'Extended Aft - 1 - "1" from 0.1
X'Extended-Aft(2) 4 - "0001" from 2#0.0001#

10OCT89 Page 35

Appendix F, Cont.

3. Specification of Package SYSTEM

with Unchecked Conversion;

package System is

- CUSTOMIZABLE VALUES

type Name is (TeleGen2);

SystemName : constant name :- TeleGen2;

Memory_Size constant :- (2 ** 31) -1; -Available memory, in storage units
Tick constant :- 1.0 / 100.0; -Basic clock rate, in seconds

- NON-CUSTOMIZABLE, IMPLEMENTATION-DEPENDENT VALUES

Storage Unit : constant :- 8;
Min Int constant :4--(2 ** 31);
Max- Int : constant := (2 * 31) - 1;
Max-Digits :constant := 15;
Max Mantissa: constant := 31;
Fine-Delta : constant := 1.0 / (2 * Max-Mantissa);

subtype Priority is Integer Range 0 .. 63;

- ADDRESS TYPE SUPPORT

type Memory is private;
type Address is access Memory;

NullAddress: constant Address :- null;

type AddressValue is range -(2"'31)..(2"'31)-1;

function Location is new UncheckedConversion (Address-Value, Address);

function Label (Name: String) return Address;
pragma Interface (META, Label);

10OCT89 Page 36

function ">" (Left, Right: Address) return Boolean;
pragma Interface (META, ">");

function "<" (Left, Right: Address) return Boolean;

pragma Interface (META, "<");

function ">-=" (Left, Right: Address) return Boolean;
pragma Interface (META, ");

function "<-" (Left, Right: Address) return Boolean;

pragma Interface (META, "<=");

function " " (Left: Address; Right: Address Value) return Address;

function "+" (Left: AddressValue; Right: Address) return Address;

pragma Interface (META, "+");

function "-" (Left: Address; Right: AddressValue) return Address;

function "-" (Left: Address; Right: Address) return AddressValue;

pragma Interface (META, "-");

- CALL SUPPORT

type SubprogramValue IS
record

Proc addr : Address;
Parent frame : Address;

end record;

procedure Call. (Subprogram: Subprogram Value);

procedure Call (Subprogram: Address);

pragma Interface (META, Call);

Max Object Size : CONSTANT :- MaxInt;
Max Record Count : CONSTANT :- Max Int;

Max Text Io Count : CONSTANT :- Max_Int-i;

Max-Text-lo-Field : CONSTANT :" 1000;

private
type Memory is
record

null;
end record;

end System;

10OCT89 Page 37

Appendix F, Cont.

4. Restrictions on Representation Clauses

The hardware needs a minimum of 32 bits to represent floating point
and access types. Therefore, specifying a size of less than 32 bits cannot
be handled simply by the underlying hardware (LRM 13.1 (10)).

The Compiler supports the following representation clauses:

Length Clauses: for enumeration and derived integer types 'SIZE
attribute (LRM 13.2(a))

Length Clauses: for composite types 'SIZE attribute (LRM 13.2(a)
Size clauses for composite types are rejected when the
specified size implies compression of composite components.

Length Clauses: for access types 'STORAGE-SIZE attribute (LRM 13.2(b))

Length Clauses: for tasks types 'STORAGESIZE attribute (LRM 13.2(c))

Length Clauses: for fixed point types 'SMALL attribute (LRM 13.2(d))

Enumeration Clauses: for character and enumeration types other than
boolean (LRM 13.3)

Record representation Clauses (LRM 13.4) with following constraints:
- Each component of the record must be specified with

a component clause.
- The alignment of the record is restricted to mod 2,

word (16 bit)aligned.

- Bits are ordered right to left within a byte.

Address Clauses: for objects, entries and external subprograms
(pragma INTERFACE used) (LRM 13.5(a)(c))

This compiler does NOT support the following representation clauses:

Enumeration Clauses: for boolean (LRM 13.3)

Address Clauses: for packages, task units, and non-external Ada
subprograms (LRM 13.5(b))

10OCT89 Page 38

Appendix F, Cont.

5. Implementation dependent naming conventions

There are no implementation-generated names denoting implementation
dependent components.

6. Interpretation of Expressions in Address Clause

Expressions that appear in address specifications are interpreted as the
first storage unit of the object.

7. Restrictions on Unchecked Conversions

Unchecked conversions are allowed between any types or subtypes unless
the target type is an unconstrained record or array type.

8. I/O" Package Characteristics

Sequential 10 can be instantiated for unconstrained array
types or unconstrained types with discriminants without default values,
but not Direct 10.

In TEXT_1O the type COUNT is defined as follows:

type COUNT is range 0 .. 2_147483_646;

In TEXT 10 the subtype FIELD is defined as follows:

subtype F-IELD is INTEGER range 0..1000;

In TEXT _O, the Form parameter of procedures Create and Open is not
supported. (If you supply a Form parameter with either procedure, it
is ignored.)

10OCT89 Page 39

TEST PARAMETERS

APPENDIX C

TEST PARAMETERS

Certain tests in the ACVC make use of implementation-dependent values, such
as the maximum length of an input line and invalid file names. A test that
makes use of such values is identified by the extension .TST in its file
name. Actual values to be substituted are represented by names that begin
with a dollar sign. A value must be substituted for each of these names
before the test is run. The values used for this validation are given
below:

Name and Meaning Value

$ACCSIZE 32
An integer literal whose value
is the number of bits sufficient
to hold any value of an access
type.

SBIGIDl 199 * 'A' & '1'
An identifier the size of the
maximum input line length which
is identical to $BIG ID2 except
for the last character.

$BIGID2 199 * 'A' & '2'
An identifier the size of the
maximum input line length which
is identical to SBIG_- ID1 except
for the last character.

$BIG_D3 100 * 'A & '3' & 99 * 'A'
An identifier the size of the
maximum input line length which
is identical to $SIGID4 except

TEST PARAMETERS

Name and Meaning Value

for a character near the middle.

SBIGID4' 100 * 'A' & '4' & 99 * 'A'
An identifier the size of the
maximum input line length which
is identical to $BIGID3 except
for a character near the middle.

SBIGINTLIT 197 * '0' & "298"
An integer literal of value 298
with enough leading zeroes so
that it is the size of the
maximum line length.

SBIG REAL LIT 195 * '0' & "690.0"
A universal real literal of
value 690.0 with enough leading
zeroes to be the size of the
maximum line length.

SBIGSTRING1 '"' & 100 * 'A' &'"'
A" string literal which when
catenated with BIGSTRING2
yields the image of BIGID1.

SBIGSTRING2 '"' & 99 * 'A' & '1' &
A string literal which when
catenated to the end of
BIGSTRING1 yields the image of
BIGID1.

$SLANKS 180 *
A sequence of blanks twenty
characters less than the size
of the maximum line length.

$COUNT.LAST 2_147_483_646
A universal integer
literal whose value is
TEXT IO.COUNT'LAST.

SDEFAULT MEM SIZE 2147483647
An integer literal whose value
is SYSTEM.MEMORYSIZE.

SDEFAULTSTORUNIT 8
An integer literal whose value
is SYSTEM.STORAGE-UNIT.

TEST PARAMETERS

Name and Meaning Value

SDEFAULT.SYSNAME TELEGEN2
The value of the constant
SYSTEM.SYSTEMNAME.

SDELTADOC 2#1.0#E-31
A real literal whose value is
SYSTEM.FINEDELTA.

SFIELDLAST 1000
A universal integer
literal whose value is
TEXTIO.FIELD'LAST.

$FIXEDNAME NOSUCHFIXEDTYPE
The name of a predefined
fixed-point type other than
DURATION.

$FLOAT-NAME NOSUCHFLOATTYPE
The name of a predefined
floating-point type other than
FLOAT, SHORT-FLOAT, or
LONG-FLOAT.

$GREATERTHANDURATION 100000.0
A universal real literal that
lies between DURATION'BASE'LAST
and DURATION'LAST or any value
in the range of DURATION.

$GREATERTHANDURATIONBASELAST 131073.0
A universal real literal that is
greater than DURATION'BASE'LAST.

$HIGH.PRIORITY 63
An integer literal whose value
is the upper bound of the range
for the subtype SYSTEM.PRIORITY.

$ILLEGALEXTERNALFILENAME1 BADCHAR*'/%
An external file name which
contains invalid characters.

SILLEGALEXTERNALFILENAME2 /NONAME/DIRECTORY
An external file name which
is too long.

TEST PARAMETERS

Name and Meaning Value

$INTEGER-FIRST -2147483648
A universal integer literal
whose value is INTEGER'FIRST.

$ INTEGER LAST 2147483647
A universal integer literal
whose value is INTEGER'TLAST.

$INTEGER AST - LUS -1 2147483648
A universal integer literal
whose value is INTEGER'LAST + 1.

$LESS -THAN -DURATION -100000 .0
A universal real literal that
lies between DURATION'BASE'FIRST
and DURATION'FIRST or any value
in the range of DURATION.

$LESS -THAN DURATION .. BASE FIRST -13 1073 .0
A universal real literal that is
less than DURATION'BASE'FIRST.

$L0UYRIORITY 0
An integer literal whose value
is the lower bound of the range
for the subtype SYSTEM.PRIORITY.

$MANTISSA -DOC 31
An integer literal whose value
is SYSTEM.MAXJ!ANTISSA.

$MAX..DIGITS 15
Maximum digits supported for
floating-point types.

$MAX..IN LEN 200
iaximum input line length
permitted by the implementation.

$MAX..INT 2147483647
A universal integer literal
whose value is SYSTEN.MAX-INT.

$MAXjNT..PLUS...1 247483.648
A universal integer literal
whose value is SYSTEM.MAX.JNT+1.

TEST PARAMETERS

Name and Meaning Value

SMAX LEN INT BASED LITERAL "2:" & 195 * '0' & "11:"
A universal integer based
literal whose value is 2#11#
with enough leading zeroes in
the mantissa to be MAX INLEN
long.

SMAX LEN REAL .BASED LITERAL "16:" & 193 * '0' & "F.E:"
A universal real based literal
whose value is 16:F.E: with
enough leading zeroes in the
mantissa to be MAXINLEN long.

SMAX STRING LITERAL '"' & 198 * 'A' & '"'

A string literal of size
MAXINLEN, including the quote
characters.

SMININT -2147483648
A universal integer literal

whose value is SYSTEM.MININT.

SMINTASKSIZE 32
An integer literal whose value
is the number of bits required
to hold a task object which has
no entries, no declarations, and
"NULL;" as the only statement in
its body.

$NAME SHORTSHORTINTEGER
A name of a predefined numeric
type other than FLOAT, INTEGER,
SHORT FLOAT, SHORTINTEGER,
LONGFLOAT, or LONG.JNTEGER.

$NAMEjLIST TELEGEN2
A list of enumeration literals
in the type SYSTEM.NAME,
separated by commas.

$NEG BASEDINT 16#FFFFFFFE#
A based integer literal whose
highest order nonzero bit
falls in the sign bit
position of the representation
for SYSTEM.MAXINT.

TEST PARAMETERS

Name and Meaning Value

$NEWMEMSIZE 2147483647
An integer literal whose value
is a permitted argument for
pragma MEMORYSIZE, other than
SDEFAULTYEM SIZE. If there is
no other value, then use
$DEFAULTMEMSIZE.

$NEWSTOR UNIT 8
An integer literal whose value
is a permitted argument for
pragma STORAGE UNIT, other than
$DEFAULTSTORUNIT. If there is
no other permitted value, then
use value of SYSTEM.STORAGE UNIT.

$NEW.SYSNAME TELEGEN2
A value of the type SYSTEM.NAME,
other than $DEFAULTSYSNAME. If
there is only one value of that
type, then use that value.

STASK_- SIZE 32
An integer literal whose value
is the number of bits required
to hold a task object which has
a single entry with one 'IN OUT'
parameter.

STTCK 0.01
A rcl literal whose value is
SYSTEM.TICK.

WITHDRAWN TESTS

APPENDIX D

WITHDRAWN TESTS

Some tests are withdrawn from the ACVC because they do not conform to the
Ada Standard. The following 44 tests had been withdrawn at the time of
validation testing for the reasons indicated. A reference of the form
AI-ddddd is to an Ada Commentary.

a. E28005C This test expects that the string "-- TOP OF PAGE. --
63" of line 204 will appear at the top of the listing page due
to a pragma PAGE in line 203; but line 203 contains text that
follows the pragma, and it is this that must appear at the top
of the page.

b. A39005G This test unreasonably expects a component clause to
pack an array component into a minimum size (line 30).

c. B97102E This test contains an unitended illegality: a select
statement contains a null statement at the place of a selective
wait alternative (line 31).

d. C97116A This test contains race conditions, and it assumes that
guards are evaluated indivisibly. A conforming implementation
may use interleaved execution in such a way that the evaluation
of the guards at lines 50 & 54 and the execution of task CHANGING-
OF THE_GUARD results in a call to REPORT.FAILED at one of
lines 52 or 56.

e. BC3009B This test wrongly expects that circular instantiations
will be detected in several compilation units even though none of
the units is illegal with respect to the units it depends on; by
AI-00256, the illegality need not be detected until execution is
attempted (line 95).

f. CD2A62D This test wrongly requires that an array object's size
be no greater than 10 although its subtype's size was specified
to be 40 (line 137).

WITHDRAWN TESTS

g. CD2A63A..D, CD2A66A..D, CD2A73A..D, CD2A76A..D [16 tests] These
tests wrongly attempt to check the size of objects of a derived
type (for which a 'SIZE length clause is given) by passing them
to a derived subprogram (which implicitly converts them to the
parent type (Ada standard 3.4:14)). Additionally, they use the
'SIZE length clause and attribute, whose interpretation is
considered problematic by the WG9 ARG.

h. CD2A81G, CD2A83G, CD2A84N & M, & CD50110 (5 tests] These tests
assume that dependent tasks will terminate while the main pro-
gram executes a loop that simply tests for task termination; this
is not the case, and the main program may loop indefinitely
(lines 74, 85, 86 & 96, 86 & 96, and 58, resp.).

i. CD2B15C & CD7205C These tests expect that a 'STORAGESIZE
length clause provides precise control over the number of
designated objects in a collection; the Ada standard 13.2:15
allows that such control must not be expected.

j. CD2D11B This test gives a SMALL representation clause for a
derived fixed-point type (at line 30) that defines a set of
model numbers that are not necessarily represented in the
parent type; by Commentary AI-00099, all model numbers of a
derived fixed-point type must be representable values of the
parent type.

k. CD5007B This test wrongly expects an implicitly declared sub-
program to be at the the address that is specified for an un-
related subprogram (line 303).

1. ED7004B, ED7005C & D, ED7006C & D [5 tests) These tests check
various aspects of the use of the three SYSTEM pragmas; the AVO
withdraws these tests as being inappropriate for validation.

m. CD7105A This test requires that successive calls to CALENDAR.-
CLOCK change by at least SYSTEM.TICK; however, by Commentary
AI-00201, it is only the expected frequency of change that must
be at least SYSTEM.TICK--particular instances of change may be
less (line 29).

n. CD7203B, & CD7204B These tests use the 'SIZE length clause and
attribute, whose interpretation is considered problematic by
the WG9 ARG.

o. CD7205D This test checks an invalid test objective: it treats
the specification of storage to be reserved for a task's
activation as though it were like the specification of storage
for a collection.

p. CE2107I This test requires that objects of two similar scalar
types be distinguished when read from a file--DATAERROR is

WTTHDRAVN TESTS

expected to be raised by an attempt to read one object as of
the other type. However, it is not clear exactly how the Ada
standard 14.2.4:4 is to be interpreted; thus, this test objective
is not considered valid. (line 90)

q. CE3111C This test requires certain behavior, when two files are
associated with the same external file, that is not required by
the Ada standard.

r. CE3301A This test contains several calls to END OFLINE &
END OF PAGE that have no parameter: these calls were intended
to specify a file, not to refer to STANDARDINPUT (lines 103,
107, 118, 132, & 136).

s. CE3411B This test requires that a text file's column number be
set to COUNT'LAST in order to check that LAYOUT ERROR is raised
by a subsequent PUT operation. But the former operation will
generally raise an exception due to a lack of available disk
space, and the test would thus encumber validation testing.

COMPILER AND LINKER OPTIONS

APPENDIX E

COMPILER AND LINKER OPTIONS

References and page numbers in this appendix are consistent
with compiler documentation and not with this report.

In addition to the switches described in the sequel the
following switches are available:

+options = <optionsfile>
specifies the file that contains the linker directives
for the target program memory location.

TeleGon2 Command Summary for UNIX-Based Cross Compilers

Table 2-1. Compilation Tools Option Summnary

Option onnd

ada aid aopt

-I(ibfile x x x
-t(emplib x - x x
-V(space.Size x x x
-v(erbose x x x

-a(dditional-optiorw x -

-B(m - x -

-b(ind..only x x -

-C(ontext ~ x
-c(pu-..ype x x x
-d(ebug x x -

-E(rror-.Abort x
-e(rrors-.only x
- F(ile-o.nly-crrs x
-f(ormat x -

-G(raph x x
-g(eneae-ofrn x -

-I(nline x x
-i(nhibit x
-Ic(eep x x
- L (ist x
-M(ap x
-m(ain x
-N (&me x
-O(ptin-ize x x
-o(utput-Joad x
-S" x x

D -s(oftware-B.foat x x x

- T(raceback x
-utpdate..Jib x
-X(ception..ihow x
- x(ecu tion.-profile x x x
-Y and -Y- x -

noTh Ivsluty of the - S opto. of "da and the -s S opioa of eGM is somewhat difuevt. Mr ~to the texIt.

2.2 INTRO-U459N.Vl.l(UNDC-C) (1 1989 Tel*Soft 04SEP89

